The newest addition to the Illumina oncology portfolio offers researchers the ability to measure Tumor Mutational Burden and Microsatellite Instability, and detect other known and emerging biomarkers
Illumina, Inc. (NASDAQ: ILMN) today announces the launch of TruSightTM Oncology 500 (TSO 500), a comprehensive pan-cancer assay designed to identify known and emerging tumor biomarkers. TruSight Oncology 500 utilizes both DNA and RNA from subject tumor samples to identify key somatic variants underlying tumor progression, such as small DNA variants, fusions, and splice variants. Importantly, TruSight Oncology 500 can measure tumor mutational burden (TMB) and microsatellite instability (MSI), features that are potentially key biomarkers for emerging immunotherapies. TruSight Oncology 500 is for research use only and will ship in Q1 2019.
Molecular testing in lung cancer has been at the forefront of precision oncology. The use of targeted therapies is associated with improved outcomes in some patients, and currently requires testing multiple biomarkers, such as EGFR mutations, ALK fusions, and ROS fusions, among others. Recently, TMB gained prominence as a biomarker that demonstrates better response and survival from immune checkpoint inhibitors in patients exhibiting high TMB, necessitating the need for comprehensive sequencing. Reliable measurement of TMB in a tumor-only workflow requires sequencing of approximately 1Mb or greater, specific and sensitive variant calling, as well as bioinformatic methods to flag and remove germline variants. Given the increasing number of biomarkers required to fully understand the optimal therapeutic course, assays like TruSight Oncology 500—one of the largest and most comprehensive panels to-date—encompasses all of these biomarkers, making it an ideal choice for cancer researchers today.
“The importance of tumor mutational burden as a biomarker to predict immune checkpoint inhibition response continues to grow in non-small cell lung cancer,” said Albrecht Stenzinger, MD, pathologist at University Hospital Heidelberg, Germany. “However, the detection of somatic biomarkers, such as ALK fusions and EGFR small variants, are also vital. The workflow of TSO 500, using both DNA and RNA, enables laboratories to evaluate TMB, as well as small DNA variants and fusions simultaneously, ultimately saving time and preserving precious samples.”
“While many methods are arising that measure TMB, these methods may differ in their variant calling performance and their gene content, affecting measurement,” said Dr. Carina Heydt, a molecular biologist at the University of Cologne, Institute of Pathology, in Germany. “As an early access site for TSO 500, not only did we find the assay easy to implement in our laboratory, but the enrichment-based chemistry of the assay, coupled with the novel bioinformatic pipeline, demonstrate a high-variant calling performance and reproducible TMB measurements.”
Pharmaceutical partners and payers are shifting toward deeper, broader sequencing to help predict which patients may benefit from new treatments including immunotherapies, targeted therapies and the many potential combinations. Recently, Bristol-Myers Squibb Company (NYSE: BMY) and Illumina announced a collaboration to develop and globally commercialize companion diagnostics, based on TruSight Oncology 500 content, to support Bristol-Myers Squibb’s oncology portfolio.
“By focusing on our most differentiated oncology products, we can meet the needs of our customers and provide a comprehensive NGS panel that includes all of the known and anticipated biomarkers associated with targeted and immune-based therapies,” said Garret Hampton, Executive Vice President of Clinical Genomics at Illumina. “As we move to bring a future in vitro diagnostic version through regulatory approval, we will be able to set the standard for accurate and reproducible testing. Today’s value in the capability to call for TMB is in line with current research and emerging guidelines, but the promise that TruSight Oncology 500 holds for the future identification of biomarkers, makes it a robust solution for this rapidly evolving field.”
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.