Search This Blog

Tuesday, June 30, 2020

CytoDyn down 32% on bearish Citron report

CytoDyn (OTCQB:CYDY -32.3%) is under pressure on more than a 6x surge in volume on the heels of a critical report from short seller Citron Research who regards the stock as a “big joke” about its claim to have developed a cure for COVID-19 with “zero” data related to over-hyped leronlimab.
Before today’s action, the stock had rallied 186% since June 17.

New strategy for methicillin-resistant staphylococcal aureus vaccine

Experiments in mice have shown early success in vaccinating them against potentially deadly bacterial infections, such as methicillin-resistant Staphylococcal aureus, or MRSA, the strain resistant to most drug treatments.
The new vaccination strategy, developed by researchers at NYU Grossman School of Medicine, targets toxic molecules released by all Staphylococcal bacteria, called leukocidins, rather than directly targeting the bacteria.
Attempts to develop a Staphylococcal vaccine have so far failed, researchers say, in part because leukocidins kill immune system cells, or leukocytes, needed by the immune system to fight the infection and whose production is triggered by a vaccine. As a consequence, these bacteria release leukocidins to evade not only an immediate immune cell attack, but also to prevent the infected host, whether human or mouse, from developing any long-term immunity through antibodies, which are also produced by leukocytes.
Now, a new study publishing in the Journal of Experimental Medicine online June 30 finds that 70 percent of mice given the experimental vaccine targeting the leukocidins survived infections with the bacterium. By contrast, no infected mice survived without the vaccine.
Previous work by the same research team found that mice could survive infection with Staphylococcal bacteria whose leukocidins had been genetically modified to lose their toxic effects. These nontoxic leukocidins formed the basis of the experimental vaccine.
“Our study provides a roadmap for developing an effective vaccine against all Staphylococcal infections, especially MRSA,” says study senior investigator Victor J. Torres, PhD, the C.V. Starr Professor of Microbiology at NYU Langone. “This strategy is based on maximum disarmament of the bacterium’s ability to kill all types of immune system cells.”
“By targeting the toxins released by the bacteria, our experimental vaccine not only stops the bacteria from killing neutrophils, a key type of leukocyte the immune system uses to destroy the invading pathogen, but also defends other leukocytes, such as T cells and B cells, needed to provide long-term protection from future infection,” says Torres.
Among the key study results was that mice repeatedly infected with toxin-releasing Staphylococcal bacteria demonstrated an immune response to the infection, producing antibodies to both the bacteria and its leukocidins. However, mice infected with bacteria engineered to not produce the toxins had twice as many antibodies targeting the bacteria, showing a much stronger immune response when the toxins were absent. This heightened immune response is what researchers say led them to target leukocidins as the best possible means of giving those infected the “upper hand” in fighting the bacterium.
Torres cautions that a commercially available antileukocidin vaccine is years away. The next step for his team is clinical trials to investigate whether humans vaccinated against the toxins show a similar toxin-specific immune response as seen in the mice.
He says investigators also want to find out if the same antitoxin effects occur for any of the hundreds of other molecules released during Staphylococcal infections. Torres says a “foolproof” vaccine against the bacteria, including MRSA, will likely involve targeting more than just its leukocidin toxins.
The latest United States estimates are that more than 119,000 people suffered from Staphylococcal bloodstream infections in 2017, leading to nearly 20,000 deaths.
###
Funding support for the study was provided by National Institutes of Health grants T32 AI007180, R01 AI105129, R01 AI099394, R01 AI133977, HHSN272201400019C, R01 HL125816, and P30 CA016087. Additional funding support came from the Judith and Stewart Colton Center for Autoimmunity and the Drs. Martin and Dorothy Spatz Foundation. Torres stands to benefit financially from his patent interests with Janssen Biotech Inc. in Raritan, NJ, the terms and conditions of which are being managed in accordance with the policies of NYU Langone.
Besides Torres, other members of the NYU Langone team are study lead investigator Kayan Tam, PhD; and study co-investigators Keenan Lacey, PhD; Joseph Devlin, BA; Maryaline Coffre, PhD; Alexis Sommerfield; Rita Chan; Aidan O’Malley; Sergei Koralov, PhD; and P’ng Loke, PhD.

Nearly half of Americans lack knowledge of burn injuries and treatment

Summertime means Americans are spending more time around grills, firepits, and fireworks, increasing their risk for fire-related burn injuries. While 53% of Americans say they know some or a lot about burn injuries and treatment, many mistakenly underestimate their risks with these activities, according to a new Arizona Burn Center at Valleywise Health/Ipsos survey. In fact, only 11% know that fire-flame injuries such as those from a firepit or grill are the most common types of burn injuries.
“Burn injuries increase in the summer months as more people are grilling outside, sitting around firepits, and setting off fireworks,” said Kevin Foster, MD, director of Burn Services for the Arizona Burn Center at Valleywise Health. “It’s important for people to be aware of not only their risk for suffering from a burn injury, but what to do if they or a loved one experience a burn.”
The online survey of 1,000 adults conducted in June by Ipsos, a multinational independent market research firm, shows that a majority of Americans are unaware that applying ice to a burn is not recommended. Nearly six in 10 either think you should immediately apply ice directly to a burn (39%) or do not know whether it is okay (18%), when doing so can actually increase tissue damage.
Additionally, 40% of Americans say they are planning to use their own fireworks or sparklers this summer, activities that put a significant number of people at risk for serious burns. Children are particularly at risk because parents are more likely than the general population to report they will be around fire hazards, including fireworks (65.8% vs. 40%), and firepits or campfires (65% vs. 50%). Additionally, of those parents planning to use or be around fireworks, half (50%) say they don’t know much or anything at all about burn injuries and treatments.
Lack of knowledge can be especially dangerous around grills, as they account for thousands of visits to the emergency room every year. Seventy-one percent of respondents say they are planning to grill this summer, but one in four incorrectly thinks water is the best way to put out a grill fire. Additionally, while nearly two-thirds (59%) of parents who plan to grill this summer know it is not okay to put out a grill fire with water, 41% falsely think it is okay or don’t know. “Burns are one of the leading causes of injury-related death in children, so the lack of knowledge that Americans demonstrate around burn injuries is concerning,” said Dr. Foster. “People need to be aware of the dangers, even with something as common as grilling, so that they are prepared to react appropriately and safely in an emergency. I encourage anyone planning to grill or use a firepit or fireworks this summer to review basic safety measures for these activities and understand what to do if someone experiences a burn.”
If you plan to use or be around a grill, firepit, fireworks, or sparklers this summer, here are just a few tips to help keep you and your family safe:
  • When grilling, cook your food in batches to avoid overloading the grill, particularly with fatty meats that can cause a flare-up.
  • If you are faced with a grill fire, use a fire extinguisher to put out the flames, not water.
  • Keep children and pets at least three feet away from the grill area at all times.
  • If the flame goes out on your gas grill, turn the grill and gas off and wait at least 5 minutes before re-lighting.
  • Fire pits should be placed at a minimum of ten feet away from your house.
  • Store matches and lighters out of children’s sight and reach.
  • Use a metal screen over wood-burning firepits to keep sparks and embers contained.
  • When using fireworks or sparklers, keep a supply of water or fire extinguisher at hand.
  • Never hold lighted fireworks in your hands and never use fireworks while impaired by alcohol.
  • Instead of sparklers, consider using safer alternatives, such as glow sticks, confetti poppers or colored streamers.
If you or someone with you experiences a burn, please seek immediate medical attention if the burn is larger than your palm; it covers your hands, joints, or face; if the pain progressively gets worse; or if the skin is peeling.

Just add sugar: How a protein’s small change leads to big trouble for cells

In molecular biology, chaperones are a class of proteins that help regulate how other proteins fold. Folding is an important step in the manufacturing process for proteins. When they don’t fold the way they’re supposed to, it can lead to the development of diseases such as cancer.
Researchers at the Sloan Kettering Institute have uncovered important findings about what causes chaperones to malfunction as well as a way to fix them when they go awry. The discovery points the way to a new approach for developing targeted drugs for cancer and other diseases, including Alzheimer’s disease.
“Our earlier work showed that defects in chaperones could lead to widespread changes in cells, but no one knew exactly how it happened,” says SKI scientist Gabriela Chiosis, senior author of a study published June 30 in Cell Reports. “This paper finally gets into the nuts and bolts of that biochemical mechanism. I think it’s a pretty big leap forward.”
How a “Good Guy” Turns Bad
The research focused on a chaperone called GRP94, which plays an important role in regulating how cells respond to stress. Stress in cells is a common sign of disease, especially those related to aging, such as cancer and Alzheimer’s. Dr. Chiosis has studied the role of chaperones and stress in both of these disorders for many years.
In the new study, Dr. Chiosis and her colleagues looked at changes in GRP94 in cancer cells, including cells from patients treated for breast cancer at Memorial Sloan Kettering. They found that when GRP94 undergoes a process called glycosylation, in which a sugar molecule is added, it completely changes the way that chaperone behaves.
“It goes from protein that was very floppy and flexible to one that’s very rigid,” explains Dr. Chiosis, a member of SKI’s Chemical Biology Program. “This one change is enough to convert it from a good guy in the cell to a bad guy. That, in turn, can make the cell behave in a way that’s not normal.”
When GRP94 undergoes this change, it moves to a different part of the cell. Normally, it’s found in the endoplasmic reticulum, where proteins are made and folded. But after the sugar is added, it moves to the part of the cell called the plasma membrane. This leads to widespread dysfunction of proteins and a more aggressive cancer.
Finding a Prototype for Future Drugs
The researchers report in the paper that they have already identified a small molecule that acts on GRP94 in the plasma membrane, called PU-WS13. This molecule appears to repair the defects in GRP94, allowing it to behave normally again.
“The changes that we saw only happen in diseased cells, such as cancer cells or those related to Alzheimer’s,” Dr. Chiosis says. “That makes them a good target for therapies because healthy cells are unlikely to be affected.”
But Dr. Chiosis explains that more research is needed before a new drug can be developed based on this approach. “PU-WS13 is just a prototype,” she says. “It has to be tailored for use in humans. We’re investigating how to make this into something that might work as a drug.”
This study was funded by the National Institutes of Health under grants R01 CA172546, R56 AG061869, R01 CA186866, P30 CA08748, and P50 CA192937; William H. Goodwin and Alice Goodwin and the Commonwealth Foundation for Cancer Research, through the Experimental Therapeutics Center of MSK; the Lymphoma Research Foundation; and the Steven A. Greenberg Charitable Trust.
Dr. Chiosis and several of her co-authors are inventors on patents covering PU-WS13 and related science. Dr. Chiosis is also a founder of Samus Therapeutics and a member of its board of directors.

Sneaky salmonella, other bacteria, find backdoor into plants

As the world wrestles with the coronavirus (COVID-19) pandemic, which arose after the virus jumped from an animal species to the human species, University of Delaware researchers are learning about new ways other pathogens are jumping from plants to people.
Opportunistic bacteria — salmonella, listeria and E. coli, for example — often piggyback on raw vegetables, poultry, beef and other foods to gain entry into a human host, causing millions of foodborne illnesses each year.
But University of Delaware researchers Harsh Bais and Kali Kniel and their collaborators now have found that wild strains of salmonella can circumvent a plant’s immune defense system, getting into the leaves of lettuce by opening up the plant’s tiny breathing pores called stomates.
The plant shows no symptoms of this invasion and once inside the plant, the pathogens cannot just be washed off.
Stomates are little kidney-shaped openings on leaves that open and close naturally and are regulated by circadian rhythm. They open to allow the plant to cool off and breathe. They close when they detect threats from drought or plant bacterial pathogens.
Some pathogens can barge into a closed stomate using brute force, Bais said. Fungi can do that, for example. Bacteria don’t have the enzymes needed to do that so they look for openings — in roots or through stomates, he said.
Plant bacterial pathogens have found a way to reopen those closed stomates and gain entry to the plant’s internal workings, Bais said.
But now, in research published by Frontiers in Microbiology, Bais and Kniel have shown that some strains of the human pathogen salmonella have developed a way to reopen closed stomates, too.
“What’s new is how the non-host bacteria are evolving to bypass plant immune response,” Bais said. “They are real opportunists. They are absolutely jumping kingdoms….When we see these unusual interactions, that’s where it starts to get complex.”
Opportunities for pathogens arise as plants are bred to increase yield, often at the expense of their own defense systems. Other opportunities arise when a grower plants low-lying crops too close to a livestock field, making contamination easier.
Together and separately, Bais and Kniel and their collaborators have been looking at this plant problem from several angles for about five years.
They are looking at the “trojan horse” methods bacteria such as salmonella are using to elude plant immune systems and find their way to new human hosts.
They are looking at an assortment of irrigation methods that can carry bacteria from waterways, ponds and reclaimed water to the surface and root systems of plants.
They are looking at the genetic components that enable pathogens to persist and survive along their passage to a new host.
Bais and Kniel have published multiple articles on these threats to the world’s food supply and have developed recommendations for increasing plant defenses.
Bais’ team, for example, developed and patented a beneficial microbe — UD1022 — to protect and strengthen plant root systems. That microbe has been licensed by BASF and is incorporated into an increasing variety of applications. Testing done as part of their new publication showed that roots inoculated with UD1022 — through watering and irrigation — could provide protection from these opportunistic bacteria.
Kniel said she was surprised to see that UD1022 kept some mutants from getting into the plant.
“There is a lot of hope for biocontrols,” she said.
Kniel’s team and collaborators from the U.S. Department of Agriculture and several other universities in the Mid-Atlantic region, recently published new findings in PLOS One analyzing the pathogenic content of irrigation methods that draw from waterways, ponds and reclaimed water.
Those are pre-harvest perils. The post-harvest dangers come more from hygiene practices of workers on the conveyor belts that move these products to market.
Many companies run leafy greens through water treated with appropriate sanitizers and may consider ozone or ultraviolet treatments to address surface bacteria. They can’t see or treat human pathogens that already have gotten into the leaf.
“The food industry works tirelessly to make the product as safe as they can,” Kniel said. “But even then, we are growing these products outside, so they’re accessible to wildlife, wind, dust and water that may transmit microorganisms. It’s a tough situation.”
Nicholas Johnson, a graduate student in Bais’ lab, did painstaking work to examine how stomates on spinach and lettuce responded to applications of salmonella, Listeria and E. coli — three human pathogens that leave no apparent fingerprints, no way to see that they have infected a plant. He recorded the size of the stomate openings — called the aperture — for hundreds of stomates on each sample leaf.
He counted these sizes every three hours after the bacteria were applied.
“He had to sit under a microscope and count the aperture sizes,” Bais said. “And he has to be meticulous.”
He found some troubling results. The salmonella strain was reopening the stomates.
“Now we have a human pathogen trying to do what plant pathogens do,” Bais said. “That is scary.”
It would be especially scary, Bais said, if it were to occur in a “vertical” farm, where plants are grown in vertical rows hydroponically.
“These are wonderful systems,” Kniel said. “But there needs to be a lot of care within the system to control the water and interactions with people. There has to be a lot of handwashing. I work with a lot of growers to make sure they have ‘clean’ breaks and are sanitizing properly. When you do that, you have fewer products to recall.”
But the dangers are real.
“The industry is working hard on this,” Kniel said. “They are some of the most passionate, dedicated people I have ever met. But outbreaks happen.”
“And if this hits vertical farms, they don’t lose a batch,” Bais said. “They lose the whole house.”
The collaboration has drawn on a wide range of expertise, giving researchers insight into many angles of the problem.
“This project [with Bais] has mutant salmonella strains and that allows us another angle on the molecular biology side,” Kniel said. “The individual mutations are important for the salmonella structure and the regulation of stress. We can see the ability of the salmonella to internalize into the plant. When we used mutant strains we saw big differences in the ability to colonize and internalize — and that’s what consumers hear a lot about. You are not able to wash it off.
“We can also look at which genes or part of the organism might be more responsible for the persistence on the plant – making it last longer and stronger. That is so important when you think of food safety issues.”
Among the other questions researchers are asking:
Do these bacteria die off more easily when they are in the sun?
Does a lot of moisture or humidity allow them to grow?
How much do they interact with the plant?
The study of irrigation water in the Mid-Atlantic region of the United States was done in collaboration with “Conserve,” a Center of Excellence that includes researchers from the U.S. Department of Agriculture and the University of Maryland.
“We’re looking at where growers get their water from and what they are doing to make sure it is microbially safe,” she said.
Some of the water is reclaimed after it was used to wash other crops. Some comes from waterways and ponds. The team took a series of samples over a two-year period, testing for salmonella, listeria, E. coli, viruses and protozoa.
“Water has been shown in multiple outbreaks to be a potential risk of contamination,” Kniel said. “This paper is important because it is identifying the risks of ponds, rivers and reclaimed water as well as discussing what growers could do and how to treat water. A lot of growers are happy to use the technology as long as it is cost-effective and reliable and can be used for fresh produce.”